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ABSTRACT

We consider a finite one-dimensional elastic body with stored-energy

2 2
function of the form W(Y) + C Y') , where Y is the strain, Y' the

strain gradient, and C a small parameter. We assume that W(y) is non-

convex, of the type capable of supporting two-phases. We show that when the

body is acted on by end loads the only stable strain fields are the single-

phase solutions Y --- constant.
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SIGNIFICANCE AND EXPLANATION

-W consider a one-dimensional ,elastic bar acted on by end loads. To

allow for the possibility of phase transitions A consider a stored-energy

function of the form W(Y) + with W(J) a nonconvex function of

strain , a function of the type capable of supporting two-phases. The term

involving the strain gradient '1 is added to model the region of rapidly

varying strain in the vicinity of a phase transition.

NU- showhat this problem has smooth solutions which, for t small,

correspond to the single-phase and two-phase solutions of the problem with

= 0. -we showrjurther that the only stable solutions of this problem are the

single-phase solutions y - constant.

The responsibility for the wording and views expressed in this descriptive

summary lies with 4RC, and not with the authors of this report.



ON-DIKENSIONAL STRUCTURRD PHASE TRANSFORMATIONS

UNDER PRESCRIBED LOADS

Jack Carr, Norton E. Gurtin, and Marshall Slemrod

1. Introduction

Consider a bounded one-dimensional body identified with the interval

[0,L]. We assume that the body is elastic with stored energy W(y) a C2

function of strainI T, 0 < y < -, and with stress

a(y) = dW(y)

dy

of the form shown in Figure I. Thus

*

a' > 0 on (0,y ), a' < 0

a(y) .
on (y ,y,), and a' > 0

on (y,,-). Let
0* * *

-. a(y.), a = a(y ).

f Then for f e (a*.a

there are exactly three

S--values of y for which

I a(y) - f

a(f) 8(f) y We denote these by

Figure 1. The stress-strain law. a(f) < A(f) < 0(f)

omitting the argument f when convenient, and we extend a(f) [respectively

B(f)) in the obvious manner for f e (O,a1 (respectively (a ,-)1.

1

If the underlying deformation u carries material points x e 10,L] to
points u(x), then y - du/dx.
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We restrict our attention to loading applied by a soft device2 , so that

the load f (- constant) is prescribed. The problem of determining the stable

strain field resulting from this load consists in minimizing the corresponding

potential energy. This problem can be stated precisely as follows:

(S) Minimize

f0 [W(y) - fy]dx (1.1)

over all Y e LI (o,L) with w(y) e LI (oL).

This problem has been studied by Ericksen [1975], and we briefly record

some of his results. The Euler-Lagrange equation is

U(y) = f
a(y)

while the form of the

minimizer depends on

whether or not the

load f is smaller than,

equal to, or larger than

* Ithe Maxwell stress

X OM where 0 M is the

unique value of stress

Figure 2. The Maxwell line. for which (Figure 2)

W(B) - W(a ) a (8 - )

am - a(UM), 8  - 8OM)

The strains aM and 8 M are the lower and pper Maxwell strains,

respectively.

2
Cf. Ericksen (1975].
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a t < f < aoM f ,=<af <14,0
Wi(Y) -fy
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Figure 3. The potential W(y) - fy

As is clear from Figure 1, the potential W(y) - fy has the form shown

in Figure 3. For f ( a* the local minimum at B disappears, as does the

local minimum at a when f ) o a Therefore for f 10 aN the solution to

Problem S i I

Y(x) 0 when f > a •

For f - a the problem is far more interesting. Here any function of the

form

y(x) - aN  for all x e s *

y W - BN  for all x e 10,L]NS (1.2)

S C (0,L], S measurable ,

is a minimizer.

We will use the following terminology: solutions of the form

Y(x) - constant

will be called single-pha"e solutionsl solutions of the form (1.2) with S

1L

The energy (1.1) also has a local minimum relative to L (0,L) at a for
a < f < a* and one at B for a. < f < aN; these constant functions are not
local minima relative to L (0,L).

-3-



and [O,LJ\8 nontrivial will be called two-phas solutions; in the latter

case, when both the nmber n1 of nontrivial connected components of S and

the number n2  of nontrivial connected components of (O,L)S are finite,

we will refer to n1+n2-1 as the degree of the solution.

Thus for f a K the solution is single-phase (and unique); for

f % oM there are two single-phase solutions (Y - a and Y S ) and an

uncountable infinity of two-phase solutions of each degree ) 1.

For the case f - a it seeis reasonable to ask whether any of the

solutions are preferred. One might expect that the single-phase solutions

are, in some sense, more stable than the two-phase solutions. We here show

that this expectation is indeed true prcvided we consider the present theory

as an approximation to a higher-order theory which allows the strain-gradient

to enter the constitutive equation for the stored energy.

A general nonlinear theory of this type was apparently first given by

Toupin [19621 and is based on constitutive functions for the stored energy and

stress of the forms

W(y,y') and a(y,y')

with

O(Y, ') = W(yy')•

The presence of the strain-gradient y' - dy/dx models situations in which the

strain varies rapidly; in this instance the force interactions within the

underlying crystal lattice cannot be adequately described by the usual notion

of stress and one needs - in addition to the (classical) stress a - a second-

order stress u which, in the present theory, is related to V through

V(ygy) -L a (Y, .

-4-



We here take the simplest possible generalization of our original theory

and write

2 92W(Yy') - W(y) + E (') 2

with W the original stored energy and a "small" constant (> 0). The

stress 0 is then independent of y* and is given by

0(y) -
dy

while the second-order stress obeys the simple relation

i(.y,) - 2c2 .y

Within this framework our problem has the following form:

(S ) Minimize

f,[W(Y) - fy + c 2 (_'f)2]dx (1.3)1

over the class of absolutely continuous functions y o.n [0,L].

The Euler-Lagrange equation for this problem is

2
2c y" - o(y) - f , (1.4)

while the natural boundary conditions have the form

y'(0) - y'(L) " 0 , (1.5)

or equivalently, P(y') - 0 at x - 0,L.

The boundary conditions (1.5) seem reasonable. Indeed, our wish is to

focus on the region of rapidly varying strain that occurs in the vicinity of a

phase transition, and it is there that the higher-order stress p should play

an important role. Away from the phase transition we expect the classical

1

Energy functionals of this type originate in the classic paper of van der
Meals (1893). Cahn and Hilliard [19583 independently rederived van der Weals'

basic theory, and in the last twenty five years gradient theories have become
a popular tool in analyzing phase transitions and other physical phenomena.
(Cf. lowlinson's (1979] translation of van der Waal [1893] for a list of
selected references.)

-5-
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theory to apply, and for that reason the boundary conditions (1.5) seem

appropriate. (Of course, one might expect it to be difficult if not

impossible to achieve this form of boundary condition in practice.]

It is clear that if a single-phase solution y minimizes the original

functional (1.1), y trivially minimizes (1.3), as y'E 0. Thus the complete

list of solutions of Problem S consists of the single-phase solutions
C

y(x) S- a for f < ON

for f 0N

'Y (x ) S N

Y(x) - for f > a

Because of the term C 2(y) 2 in (1.3), two-phase solutions of the form

(1.2) are not members of any function class which renders S a meaningful

problem. On the other hand, there are solutions of the Euler-Lagrange

equation (1.4) for f - a which spend most of their time near aN and

and which correspond to the two-phase solutions of the unstructured theory.

This raises the question of whether such structured solutions can be relative

minimizers of (1.3). We will show that the answer to this question is no; in

fact, we will prove that all nonconstant solutions ", of the problem

2
2e y" - O(¥) - f

(1.6)
Y' (0) - Y'(L) " 0

are unstable.

Remark. Our analysis is also appropriate to a fluid in a one-dimensional

chamber acted on by a pressure p - -f. In this instance y is the specific

volume, V(y) is the internal energy per unit mass, x e w,L] labels

material points in a fixed reference configuration with uniform density p. ,

and the functionals (1.1), (1.3) - multiplied by p0 - represent the total

potential energy.

-6-



2. Structured solutions.

It is convenient to change length scales. We let

t- x/C, L M L/C

and consider Y(t) as a function of t rather than xi the problem (1.6)

then takes the form

) ( 0) - y(L ) - o (2.1)

with y - dy/dt, and multiplying (2.1) 1 by Y and integrating leads to the

"first integral"

-. (¥ - O( 0) , (2.2)

where 0(y) - W(y) - fy ,

Yo Y(O) *(2.3)

For future use we note also that the associated energy (1.3) is now given by
Lt

(Y) - foe E 2 + *(Y)]dt (2.4)

Remark. Equation (2.1), is the equation of motion of an undamped oscillator

of emasse 2 and "potential energy" -#(y)i the functional Z is the corre-

sponding "Hamiltonian".

We now state two propositionsv these allow us to concentrate on

nonconstant solutions to Problem i. and to f e (o*., ). The first

proposition follows frm the fact that y - constant solves S if and only

if 0(y) - f. The second Is a direct consequence of the phase portraits for

f (0,,0 )l for such f there are no trajectories with y - 0 at two

distinct places.
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Proposition. The complete list of constant solutions of Problem S Is as

follows:

a, 0 < f < O*

lf 
f  a,

*, < f < a (2.5)

f-

B f > a

Proposition. All nonconstant solutions to Problem S correspond to f in
Q6

the range (a,,o).

The graphs of -0 for f e (o,,o) are simply the curves of Figure 3

turned upside-down. In view of the remark, this allows us to easily arrive at

the phase diagrams shown in Figure 4.

< f < a -fY<m < a

Figure 4. Phase diagrams

Let us agree to use the term admissible trajectory for a nonconstant

solution y(t), 0 4 t 4 T¥F of the problem

2 a(y) -f

;(0) - Y(T ) . 0

*ME



T e (0,m) is then the duration of Y, and the number of times t, not

including t - 0, that Y(t) - 0 is the degree of Y. Problem S (for

nonconstant solutions) can then be stated as follows: find an admissible

trajectory with duration LC-

This formulation allows us to easily establish the following existence

theorem for Problem S .

Theorem. Let f e (0,,0). Then there is a constant C - C(f) > 0 such that:

(i) for C > L/C, Problem ; has only constant solutionsi

(ii) for C < L/C, Problem S. has nonconstant solutions of degree n for

each n 1,2,...,N, where N is the larqest integer with N < L/(CC).

Proof. We will establish this result only for the case

f M

the remaining cases 0* < f < aM  and a N f < o are completely analogous.

It is clear from the phase portrait that each admissible trajectory Y

may be labeled by its initial-value y(0) - y0 and its degree N. Further,

each such Y has Y0 in either (aM A ) or (X B M), and there is an

obvious one-to-one correspondence between the two resulting classes of

trajectories; this allows us to restrict our attention to trajectories Y

with

YO e (%'AM)

Given such a trajectory, ;(t) > 0 for 0 < t < ti, where t, = T Y/IN with

T the duration and N the degree of yu further, y(t 1 ) - yi, where

i - Y1 (Y0)

is the unique solution of

O(y I )- 1 (To)

in the interval (AM ,B ) (cf. (2.3) and Figure 3). The duration

TY- T(Y0,N)

• , -. II... ... . . . . ... ..... . .. ..... ..... :.'-,'"L-' ,- ' ....-,,I J, -- ..: . ' ...."- ... .- i



of such a trajectory is then trivially equal to

TY- W fT/ (t)- Tdy(t)

and if we change variable of integration from t to y, we conclude, with

the aid of (2.3), that

T(T 0 ,W) - UT(T 0 ) I

T( TI( 0 d 
(2.6)

0 Y'O f/ ( )- c(y )

T(Y 0 ) has the limits
1

T() " + D, T(A-) 2 V 0 (2.7)

(the latter being one-half the period of the oscillator defined by (2.1)1

linearized about the rest point A ). Further the integrand in (2.6) is

bounded away from zero, as is the interval of integration for

Y. e (aMXM-6). Thus, in view of (2.7)2, C defined by

C - inf{T(T0) a < Y A14)

is strictly positive.

Clearly, the equation

T( 0 ) -L (2.8)

has no solution Y0 e (aMA ) when Lj < C, and this implies (i) of the

theorem.

On the other hand, for L > C we conclude from (2.7), that (2.8) has at

least one solution Y0 e (a%,AY), as does the more general relation

nT(y0) - L
nTY0 L

for n - 1,2,...,N with N the largest integer < L /C. This yields (ii).

1

Cf., e.g., Hale [19691, p. 179; Arnold [19781, Chapter 2, Section 4.
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Rkemark. Let f -0and consider the solution of degree I starting in

(a ).For C small this solution will be close to the heteroclinic orbit

from a to 0 and hence will spend most of Its time near IN and B N. In

this sense the solution represents the structured analog of the unstructured

(E-0) two-phase solutions of degree 1 which have a N followed by ON

Similarly, the structured solution of degree 2 starting in (a,,A,4) is the

analog of the unstructured two-phase solutions of degree 2 which havea

followed by 0 followed by N*Similar assertions apply to the other

nonconstant solutions.



3. Stability.

Throughout this section the energy
L

E(Y) - + W(y) - fyl]dt

is considered as a functional with domain

r - {y e H I(0,L ): Y ) 0 on [0,L ])£ CD

- 1
In addition, we assume that W is a C function, so that, by (2.1)10

solutions of S are C on [0,L E.

Let Y be such a solution. Then

(i) Y is globally stable if

(Y) 44 (w) for all we r

(ii) Y is locally stable if there is a neighborhood 0 of y in r such

that

Z(Y) 4 Z(w) for all w e a

(iii) Y is unstable if given any norm on the space C(0,L and any

neighborhood U of Y in this normed space there is an w e a with lower

energy:

E(w) ( Z(y).
2A

Theorem.2 All nonconstant solutions of Problem SC are unstable.

The proof is based on the following lema, which is well known.

Lemma. Let Y be a solution of S . Supose there exists an n e C(OL 

such that

I(Y,n) - f 2r,2 + w-l~r 2]dt 1 0

Then Y L unstable.

C 2 would suffice provided CmOL ] in (iii) is replaced by C2 [O,L ].

Within a slightly different context a similar theorem has been established by
Chafee (1975]. (Cf. Casten and Holland (19781 and Hatano 119791.) We arrived
at our results before discovering the above references.

-12-A ___
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Proof. Let

w(T) - (y + tn)

for all sufficiently small T. Then a simple calculation, based on (2.1),

shows that

V1(0)" 0, 'p"(0) - I(yn)

Since I(y,n) < 0, this tells us that p has a strict relative maximum at

T - 0; hence

z(y ) < E(y), Yr " Y + Tn

for all sufficiently small T I 0. Moreover, as

lyT - yI - Ill Ini

(101 arbitrary), every l-I - neighborhood contains functions yT T 1 0,

and the proof is complete.

Proof of Theorem. Let Y be a nonconstant solution of S C and let

n(t) - y(t) + 60(t)

with
L - t

0(t) L (3.1)

and 6 an arbitrary constant. Then, writing 1 -(8,n),

16 A + 26B + 62C , (3.2)

where

A - +0 2i2 + W_(y)y2 dt

B - + [2¥i + W-(y)y;ldt ,

C - I(7,8)

By (2.1)2,

21F- W(y); ,

and hence, using (2.1)2,

-13-
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L
A - 2fo ') dt - o 

313.3)

L
B - 2)'dt -2y(0)

Clearly, Y'(O) 9 0, for otherwise, by (2.1), Y would be constant; thus

B E 0. We therefore conclude from (3.2) and (3.3) that for some 6 jO 0,

I a(<0

and the proof is complete.

Remark. It is interesting to note that the last theorem In in!!ependent of the

particular form of the stored energy W.

To complete our study we have only to investigate the stability of the

constant solutions (2.5), but this is not difficult.

Proposition. The constant solutions (2.5) have the following properties:
*

a ing lobally stable for 0 < f 4 0. and locally stable for 0, < f < B

is globally stable for aN 4 f <m and locally stable for 0* < f < M

is unstable for o• 4 f 4 .

Proof. Let -Y be a constant solution. Then for any w e r,
L€

Z(w) - N(Y) f (w) +;21 dt0

and the global stability of a follows from the fact that 0 has a global

minimum at a for 0 < f IC. Also, for a < f < o a is a local minimum

for 0: hence there is a 6 > 0 such that 4(a) 4 f(T) and T > 0 for all

T with IT-1 < 8. Further

a {w e r: Iw(t)-al < 8 for all t e [OLe]}

is a neighborhood of Y(t) E a In H (0,LC) and Z(a) • 9(w) for all

w e fl: hence a is locally stable for % < f < a

The assertions concerning B are established in a similar manner.

-14-



*

Finally, for a* ( f I c , A is not a local minimum for * and we can

find points T which are arbitrarily close to A and have O(T) < (A).

Thus we can find constant functions w which - in any norm on C [O,L I - are

arbitrarily close to y(t) X and have E(w) < 3(y). Therefore X is

unstable.
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